Further Algebra and Functions IV Cheat Sheet

Graphs of Rational Functions with Linear Terms

A rational function with linear terms has the form:

 $y = \frac{ax+b}{cx+d}$

where $x \neq -\frac{d}{c}$. This is a transformation of the reciprocal graph $y = \frac{1}{r}$ and is a particular type of curve known as a hyperbola. The properties of the graph are useful to know to make sketching easier. The x-intercept occurs when y = 0, so $x = -\frac{b}{x}$. The y-intercept occurs when x = 0 and therefore $y = \frac{b}{x}$.

Finding Asymptotes

Rational function graphs have asymptotes. These are straight lines which the graph never touches but will approach as x or y tends towards infinity. The vertical asymptote occurs when the denominator is zero, so at $x = -\frac{a}{2}$. The horizontal asymptote occurs for large values of x, so the denominator can be approximated to *cx* and the numerator to *ax*. Therefore, the asymptote happens at $y = \frac{a}{x}$.

Example 1: Sketch the function $y = \frac{2x+3}{2x+q}$ where q > 3.

Finding Points of Intersection

Example 2: The function f(x) is given by $f(x) = \frac{3x}{2x-1}$ and the line ℓ is given by y = mx + 1. Given that ℓ is a tangent to f(x), calculate all possible values of m.

The points of intersection occur when the two equations are equal. It is possible to solve for a value of x from the quadratic equation.	$\frac{3x}{2x-1} = mx + 1$ $3x = 2mx^{2} + 2x - mx - 1$ $0 = 2mx^{2} - (m+1)x - 1$
The discriminant can then be used to determine the value of m . As the line ℓ forms a tangent, the discriminant equation to solve is $b^2 - 4ac = 0$. This equation can be solved in multiple ways. In this solution, the completing the square method has been used to solve the quadratic for m .	$(-(m+1))^2 - 4(2m)(-1) = 0$ $m^2 + 2m + 1 + 8m = 0$ $m^2 + 10m + 1 = 0$ $m = -\frac{10 \pm \sqrt{10^2 - 4(1)(1)}}{2}$ $m = -5 \pm 2\sqrt{6}$

Inequalities Involving Rational Functions with Linear Terms

Example 3: There are two functions: $f(x) = \frac{3x+1}{2-3x}$ and $g(x) = \frac{x+1}{2x-3}$. By sketching g(x) and f(x) on the same axes, determine the exact values where f(x) > g(x).

Graphs of Rational Functions with Quadratic Terms

Some rational functions can contain guadratic expressions and have the form:

$$y = \frac{ax^2 + bx + c}{dx^2 + ex + f}$$

For these graphs, the y-intercept occurs when $y = \frac{c}{c}$ and the x-intercept occurs when $ax^2 + bx + c = 0$. It is also possible to investigate the y-values for the function by letting y = k. This forms a quadratic equation for which you can use the guadratic discriminant to determine if there is a solution for the equation. The vertical asymptotes occur for the solutions to $dx^2 + ex + f = 0$. The horizontal asymptote occurs for large values for x, so when $y = \frac{a}{x}$.

Example 4: Sketch $y = \frac{x^2+3x}{x^2+3x-18}$ including the asymptotes and axes intercepts.

Let y = k and rearrange expression.

Using the discriminant (the range of values for *l* where the stationary poi

The solutions suggest th values between 0 and $\frac{5}{2}$ y = 0 there must be a

 $y = \frac{5}{2}$ there must be a n for x at these coordinat

substituting them back i

Finding Oblique Asymptotes (A-Level Only)

Example 6: A curve C is given

- b)
- points for C.
- c)

a) The quadratic rational function can be rewritten in the form $Ax + B + \frac{c}{x-2}$ using polynomial long division or by comparing the coefficients of the two forms. The oblique asymptote equation occurs at the leftover rational function $\frac{2}{r-3}$. This is true because when the values for x are very large, this term is very small.

b) The stationary points occur where f'(x) =0. From this, it is possible to determine the xcoordinates of the stationary points and substitute those values back into f(x) to find the corresponding y-coordinate

c) Using the details found in part a) and b), sketch the graph. Remember the oblique asymptote is a diagonal line.

AQA A Level Further Maths: Core

Example 5: Find the stationary points for $y = \frac{x^2 - 4x + 4}{x^2 - 9}$.

e to find a quadratic	Let $y = k$:
	$k = \frac{x^2 - 4x + 4}{x^2 - 9}$ $kx^2 - 9k = x^2 - 4x + 4$ $(k - 1)x^2 + 4x - (9k + 4) = 0$
$\Delta = b^2 - 4ac$), find \dot{c} and determine ints are.	$\Delta = 4^{2} + 4(k - 1)(9k + 4)$ = 36k ² - 20k = 2k(18k - 10) There are solutions when k < 0 and k > $\frac{5}{9}$.
at there are no <i>y</i> - . This suggests when maximum and when ninimum. The values es can be found by into the equation.	A maximum occurs when $y = 0$ and $x = 2$. A minimum occurs when $y = \frac{5}{9}$ and $x = \frac{9}{2}$.

If in the quadratic rational function form d = 0, then the rule that the horizontal asymptote occurs at $y = \frac{d}{d}$ is no longer applicable. Instead, the rational function needs to be simplified into a polynomial and a rational function. In terms of the asymptote, this means that for large values of x, the graph does not tend towards a constant and the asymptote is a non-horizontal line. This type of line is known as an oblique asymptote.

n by
$$f(x) = \frac{2x^2 - 5x - 1}{x - 3}$$
.

a) Find the oblique asymptote equation for *C*.

By finding a condition on for the number of solutions to find the coordinates of any stationary

Sketch a graph of f(x) including any stationary points and asymptotes.

